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ABSTRACT

When a series of geometrically similar reinforced concrete members
fail in shear, the shear stress at failure sometimes substantially
decreases as the size of the member increases. Identifying those
situations where this size effect in shear is significant is the main
objective of the analytical and experimental studies summarized in
this report. It is concluded that columns which contain only small
amounts of shear reinforcement, are subjected to low axial loads, and
have ratios of column height to member thickness greater than about
2.5 are particularly sensitive to the size effect in shear. The report
demonstrates that analytical methods based on the modified

~ compression field theory are capable of predicting reasonably well the

magnitude of the size effect in shear.
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NOTATION

area of concrete compressive strut

area of longitudinal reinforcing bars on flexural tension side of member
area of shear reinforcement within distance s

maximum aggregate size

effective web width

web width

diameter of circle through centres of longitudinal bars, circular section
distance from extreme compression fibre to centroid of longitudinal
tension reinforcement

diameter of reinforcing bar

effective bar diameter, bundled bars

bar diameter of longitudinal (x) reinforcement

bar diameter of transverse (y) reinforcement

effective shear depth, taken as the flexural lever arm which need not be
taken less than 0.9d.

modulus of elasticity of reinforcing bars

compressive strength of concrete

cracking strength of concrete

limiting concrete stress in compression strut

average stress in longitudinal (x) reinforcement

stress in longitudinal (x) reinforcement, at crack location

average stress in transverse (y) reinforcement

stress in transverse (y) reinforcement, at crack location

yield strength of rebar

yield strength of longitudinal (x) reinforcement

yield strength of transverse (y) reinforcement

average residual tensile stress in cracked concrete

principal compressive stress in concrete

crushing strength of diagonally cracked concrete
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Veimax

distance from base of member to point of application of shear force
applied moment, taken as positive

pure flexural capacity of section, when axial load is zero and strain
hardening of reinforcement is neglected

applied axial load, taken as positive for tension, negative for compression
number of bars in a bundle or number of longitudinal bars around the
perimeter of a circular section

spacing of shear reinforcement

crushing capacity of concrete compression strut

maximum distance that concrete in the shear area is away from a bar in
the longitudinal (x) direction

maximum distance that concrete in the shear area is away from a bar in
the transverse (y) direction

crack spacing when cracks are perpendicular to the longitudinal (x)
reinforcement

crack spacing when cracks are perpendicular to the transverse (y)
reinforcement

equivalent value of s, for beams in which aggregate size is not 19 mm
crack spacing when cracks are inclined at angle 6 to the longitudinal axis
of the member

applied shear force

shear strength provided by tensile stresses in cracked concrete

shear strength of section

applied shear stress

concrete contribution to the shear resistance

shear stress transmitted across a crack

maximum shear stress that can be transmitted across a crack

maximum shear resistance at a section

steel contribution to the shear resistance

applied shear stress

crack width
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Pe
Pw
Px

inclination of concrete compression strut tc; axis of member

lateral displacement

tensile stress factor indicating ability of cracked concrete to transmit shear
average shear strain in x-y plane

principal tensile strain in cracked concrete

principal compressive strain in cracked concrete

strain in concrete when f, reaches f,

average longitudinal strain

average transverse strain

tensile strain in reinforcement crossing strut

angle of inclination of principal compressive strain in cracked concrete
with respect to longitudinal axis of member

reinforcement ratio

reinforcement ratio, longitudinal steel

ratio of transverse web reinforcement

reinforcement ratio in longitudinal (x) direction

reinforcement ratio in transverse (y) direction
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1. INTRODUCTION

When a series of geometrically similar reinforced concrete members fail in

shear, the shear stress at failure sometimes substantially decreases as the size of the

member increases. This so-called "size effect in shear” is illustrated in Fig. 1.1,

which summarizes the results of an extensive experimental program conducted in

Japan by Shioya et al.[1,2] It can be seen that, for these lightly reinforced (0.4% of

longitudinal reinforcement, no stirrups), uniformly loaded, simple span beams, the

shear stress at failure decreases, both as the member depth increases and as the

maximum aggregate size decreases. For these particular beams, increasing the

effective depth of the beam from 200 mm to 3 m decreased the shear stress at

failure by a factor of about 3.
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Figure 1.1 Influence of Member Depth and Maximum Aggregate Size on Shear
Stress at Failure (Tests by Shioya et al.[1,2])




In the evaluation and design of reinforced concrete structures the engineer
uses expressions for shear strength that are typically based on tests of relatively
small specimens. For example, the basic ACI[3] expression for the "concrete

contribution", V_, was derived in 1962[4] from the 194 test results shown in Fig. 1.2,

where, for MPa units,

vd
V. = 0.158\/ "bod+1724p. 2% d
¢ fe by Pwr 7w (1.1)

< 0.291\/ 7! b,d

The average depth of these 194 beams was 340 mm, while the average amount of

flexural tension reinforcement was 2.2%. The above expression for V, implies that

the shear stress at failure will be greater than 0.158 \/ fC/ . However, some of the

large, lightly reinforced beams shown in Fig. 1.1 failed at shear stresses that were

only about 50% of this value.
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Figure 1.2 Derivation of ACI Expression for Diagonal Cracking Shear V.
(Adapted from Ref. [4])

The 1962 ACI-ASCE Committee 326 recommendations[4] for changes to the
ACI shear design provisions were initiated because of the August 1955 collapse[5]
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of the Wilkins Air Force Depot warehouse in Shelby, Ohio and the 1956 collapse of
a similar warehouse in Georgia. These collapses were caused by the failure of 915
mm deep beams which, at the failure locations, did not contain stirrups, and only
had 0.45% of longitudinal reinforcement. The beams failed at a shear stress of only
about 0.5 MPa, whereas the ACI Building Code[6], used in the design, permitted an
allowable working stress of 0.6 MPa for the 20 MPa concrete used. At this time,
the sensitivity of the failure shear stress, of this type of member, to size was not
recognized and so, in investigating the failures at the Portland Cement Association
(PCA) the research engineers chose to use one-third scale models. The PCA
experiments[7] indicated that the 305 mm deep beams failed at a shear stress of
about 1 MPa; that is, about twice the failure shear stress of the prototype. When an
axial tensile stress of about 1.4 MPa was applied to a model beam the shear stress at
failure was reduced by about 50%. The PCA engineers concluded that the presence
of tensile stresses, in the prototype beams, caused by the restraint of shrinkage and
thermal movements was the reason why the beams had failed at such low shear
stresses. It so happens that the beams tested by Shioya et al., and shown in Fig. 1.1,
had rather similar characteristics to the Air Force warehouse beams. The failure
shear stress for the prototype warehouse beams and the PCA model beams without
axial tension have also been plotted in Fig. 1.1. From this figure it seems clear that
the 50% reduction in failure shear stress between the model and the prototype for -
the Air Force beams was primarily due to the size effect in shear, rather than the
influence of axial tensile stresses. | A
Reinforced concrete members that contain ties or stirrups will not exhibit the
same sensitivity to member size as the beams shown in Fig. 1.1. Members
subjected to axial compression, members with more longitudinal reinforcement, and
members with short shear spans will also be less sensitive to the size effect in shear.
Thus, in many practical situations the size effect in shear will be negligibly small,
while in other practical situations such as those shown in Fig. 1.1, the size effect
will be very substantial. In this paper some analytical and some experimental
studies will be reviewed with the objective of identifying more precisely those

situations in which the size effect in shear is significant. As the analytical studies

3-



will use the modified compression field theory[8] a discussion of the theory will be

given.

2. MODIFIED COMPRESSION FIELD THEORY

The modified compression field theory was developed by observing the load-
deformation response of a large number of reinforced concrete membrane element
loaded in pure shear in the University of Toronto’s membrane element tester[9,10]
and shell element tester[11]. Figure 2.1 compares the calculated and observed
response for one of these elements, which was called SE6[11]. The problem
addressed by the modified compression field theory is to predict the relationship

between the shear stress applied to such an element and the resulting shear strain.

4
° — e e R IR ——. ~
Vaniny” o‘% - \.\'
/ ./ Observed
/./ response
3r /0// y )
/ —_— No. 20M at 72 mm
o/l(\ '}/v each face
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[/ P v =—t—each face

~y———— X
v
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[ 2=10mm p, = 0.0033  fyyicis = 479 MPa  p, f,,;10=1.58 MPa
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Clear cover to x bars - 10 mm

0 1 L 1
0 5 10 - 15 20

Yy x107)

Figure 2.1 Comparison of Calculated and Observed Shear Response of
Membrane Element SE6

Cracked reinforced concrete transmits shear in a relatively complex manner
involving opening and closing of pre-existing cracks, formation of new cracks,
interface shear transfer at rough crack surfaces, significant tensile stresses in the
cracked concrete, and great variation of local stresses in both the concrete and

reinforcement from point to point in the cracked concrete, with the highest
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reinforcement stresses and the lowest concrete tensile stresses occurring at crack
locations. The modified compression field theory attempts to capture the essential
features of this behaviour without considering all of the details. In lieu of following
the complex stress variations in the cracked concrete, only the average values of the
stresses (that is, stresses averaged over a length greater than the crack spacing) and
the stresses at the crack locations are considered.

Figure 2.2 summarizes the equilibrium, compatibility and stress-strain
relationships used by the modified compression field theory. In these relationships 8
is the angle between the x axis and the direction of the principal compressive
average strain. Note that these average strains are measured over base lengths that
are greater than the crack spacing. The basic simplifying assumption of both the
compression field theory[12] and the modified compression field theory[8] is that
"the direction that is subjected to the largest average compressive stress will coincide

with the direction that is subjected to the largest ave;agé compressive strain.” For
specified applied loads, the angle 8, the average stresses and the average strains can
be determined by solving the given equilibrium equations in terms of average
stresses, the given compatibility equations in terms of average strains and the given
average stress—average strain relationships.

The maximum shear stress that the element can resist may be governed not
by the average stresses, but rather, by the local stresses at the crack locations. In
checking the conditions at a crack, the actual complex crack pattern is idealized as a
series of parallel cracks, all occurring at angle 6 and spaced at a distance sy apart. It
is assumed that for crack widths greater than about—-0.0S mm no significant tensile
stresses can be transmitted normal to the crack. However, shear stresses, v,;, can be
transmitted across the crack. The maximum possible value of v ; is assumed to be
related to the crack width, w, and the maximum aggregate size, a.

Solving all the equations given in Fig. 2.2 is of course very tedious if
performed by hand but is quite straightforward with a programmable calculator or
other small cdmputer. A short (about 300 lines of BASIC) program called
MEMBRANE, which performs these calculations is given in the textbook

Prestressed Concrete Structures[12]. Program RESPONSE, which is also given in

-5-
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Figure 2.2 A Summary of the Relationships Used in the Modified Compression
Field Theory

this textbook, is somewhat more convenient to use than program MEMBRANE and
can be used to solve for membrane elements provided that there is no applied axial
stress in the y direction. The results obtained from program RESPONSE for element
SE6 are summarized in Table 2.1 and are plotted in Fig. 2.1.

The modified compression field theory[8] d{ffers from the earlier
compression field theory[12] in that it accounts for the presence of tensile stresses in
the cracked concrete. Using the second equilibrium equation from Fig. 2.2, the
shear applied to the element, v, can be related to the average stress in the weaker y

reinforcement, f,, and the average tensile stress in the cracked concrete, f;, as

v = ficotd+p, f, cotd (2.1)



Table 2.1 Predicted Response of Membrane Element SE6
(Crack spacing parameters: s, = 195 mm; s, = 450 mm).

Average Strains (x 10%) Average Stresses (MPa) | Stress at Crack (MPa) | ,, v
(mm) | (MPa)

Comments
81 & l"'y ny 6 fxx fsy fl f2 meax fmr fsycr Vei | Vemnax

0.088] -0.01] 0] 0.19] 42.9°] -3| 0]2.06/239|400| - | - - - 0] 1.78|uncracked
0.50| 0.14|0.25] 0.59] 39.8°| 29| 51| 1.39] 2.40{ 40.0| 777|472 0| 2.81| 010 1.87|f = fiyiela
1.00| 027(0.59] 1.09] 37.0°| 55}118] 1.22| 322} 40.0] 99{479| 0.06} 2.27| 0.21] 2.13
1.50] 0.39}0.94| 1.57| 35.5°] 78{187| 1.12} 4.02| 39.8| 128{479| 0.24| 1.89] 031} 2.44
2.50| 0.60}1.63| 2.57] 34.1°|120|326}0.99] 5.55| 35.1] 189{479| 0.72] 1.42{ 053} 3.04
3.50] 0.79]2.34] 3.55| 33.2°]157|467]0.78] 6.90| 31.4] 243(479] 1.13] 1.13| 0.75] 3.52}v; = Ve
6.00] 1.01]4.44] 5.58] 29.2°|202|479]0.41| 7.88| 24.8] 261|479| 0.73| 0.73| 1.35| 3.53
9.00] 1.19|7.04] 7.83} 26.6°|239|479 6.25 8.79| 19.8| 281]|4791 0.50{ 0.50{ 2.10] 3.62
| 20.00| 1.52|16.5] 16.3| 23.3°[304|479]0.10| 10.6] 11.4] 326{479| 0.23| 0.23]| 4.92| 3.87|v=v,,
21.50] 152|17.8] 17.2| 23.3°|304|479] 0.09] 10.5] 10.7{ 324{479| 0.22| 0.22]| 5.29} 3.85|f, = fima

The above two components of the shear resistance can be thought of as a concrete
contribution, v,, plus a steel contribution, v,. The mechanisms involved in
transmitting the average tensile stresses, f;, through the cracked concrete are
sensitive to the width of the cracks. For two geometrically similar reinforced
concrete elements, with one element being twice the size of the other, the crack
widths, for given strains, will be about twice as large for the larger element.
Because of this, the average tensile stress than can be transmitted in the larger
element will typically be smaller, and hence, the shear stress at failure will be
smaller.

Because the size effect in shear is related to-the mechanisms involved in
transmitting f; through cracked concrete it is appropriate to discuss these
mechanisms in more detail. Figure 2.3 shows two free body diagrams of a corner
portion of element SE6 where the corner has been cut off at an angle of 34.1°. This
is the calculated direction of principal compressive average strain when the principal
tensile average strain, €, equals 2.5 x 103, See Table 2.1. At this strain, the shear
stress applied to the element is predicted to be 3.04 MPa. Figure 2.3(a) illustrates
how this applied shear stress is balanced by the average reinforcement stresses and

the average tensile stress in the concrete, f;, which at this stage can be calculated as

-



Jfor (2.2)

1+/500¢,
=_ 03340  _ o985 MPa

1 +4/500x0.0025

h

Note that the vertical force transmitted across the diagonal plane by the vertical
component of the force resulting from the average tensile stress in the concrete is
281 kN, while the vertical force transmitted by the average tensile stresses in the y
reinforcement is 307 kN. In terms of Eq. (2.1) these two components are equivalent
to

v = ficotd +p_f, cotd

0.985cot34.1 +0.0033x326 cot34.1
1.455+1.589 = 3.04 MPa

Figure 2.3(b) examines the stresses required to be transmitted across a crack
that has formed at 34.1° to the x axis. Cracks in an element such as SE6 form in a
number of different directions. See Fig. 2.4. The initial cracks formed at about 45°
to the x reinforcement. As the shear stress was increased cracks formed at about
35°, 28° and 20° to the stronger x reinforcement. With an increase in shear stress
the width of the earlier cracks remained relatively constant while the width of the
most recently formed cracks increased. At a particular load level, the modified
compression field theory checks the stresses for a crack direction that corresponds to
the current calculated value of 8. For element SE6 this angle decreases from 42.9°
to 23.3° as the shear stress increases from 1.78 MPa to 3.87 MPa. See Table 2.1.
For an angle of 34.1° the maximum vertical force that the y reinforcement can
transmit across the diagonal crack is 450 kN. As this force is not large enough to
balance the applied vertical force of 587 kN, a shear force of 247 kN is required to
be transmitted across the crack surface, which is equivalent to a shear stress of 0.72

MPa.



326 x 0.0033 x 1000 x 285
=307 kN

I ogq 0.985x 1207 x 285

V =339 kN
Y+ 190

3.04 x 677 x 285
=587 kN

» 120 x 0.0292 x 677 x 285
=676 kN

ww /9

1000 mm  341°

——
3.04 x 1000 x 285 = 866 kN

(a) Equilibrium in Terms of Average Stresses

Y 0.72x1207 x 285
=247 kN

479 x 0.0033 x 1000 x 285
=450 kN

189 x 0.0292 x 677 x 285
= 1065 kN

Lt

587 kN

34.1° .

D —
866 kN
(b) Equilibrium in Terms of Stresses at Crack

Figure 2.3 Equilibrium of Element SE6 When g; = 2.5 x 10 and v = 3.04 MPa

The maximum shear stress that can be transmitted across a crack that has no

compressive stress applied to it is assumed to be

/
__osffl 3

cimax
031+ _24¥
a+16

v

where the crack width, w, is taken as
W = e, @24

and the crack spacing sg is taken as



Figure 2.4 Observed Crack Patterns for Element SE6

So =~
% Tsind , €0sH (2.5)

S, s,

The crack spacing when the cracks are perpendicular to the x reinforcement, s, may

be taken as

S, =S .. t0.1d, /p, (2.6)

X

where s, is the maximum distance that the concrete in the shear area is away
from a bar in the x direction and d,, is the bar diameter of the x reinforcement.
Similarly the crack spacing when the cracks are perpendicular to the y reinforcement

may be taken as

Sy = Spaxy + 0-1d, /0, 2.7)

y

-10-



The calculation of s, and s, for element SE6 is illustrated in Fig. 2.5 where it can be

seen that 5, equals 195 mm and s, equals 450 mm. Hence,

so = 1/(sin34.1/195 + cos34.1/450) = 212 mm
w = 212x2.5%1073 = 0.53 mm

and

b = 018/A0 o mpa

cimax
031+ 24x0.53
10+16

As this maximum shear stress which can be transmitted is considerably greater than
the 0.72 MPa shear stress required to transmit the f; given in Eq. (2.2), no reduction

in this value of f; is required.

211 mm .‘ |‘72 mm d, = 20 mm
/

T—.....f..’...

285 mm <> 253 mm <243 mm
-L—O * [ ] [ "0[ L ] [ ] L ] [ ] [ ] [ ]
211 mm s, =0.5x 253 + 0.1 x 20/0.0292 = 195 mm

(a) Calculation of crack spacing s,

43 mm ’.215 mm" d, =10 mm
T . . . ! _—T
285 mm <> ?mm <> 199 mm
43 Inm 5, =0.5x 293 + 0.1 x 10/0.0033 = 450 mm

(b) Calculation of crack spacing s,

Figure 2.5 Calculation of Crack Spacing Parameters s, and s, for Element SE6
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It can be seen from Table 2.1 that for values of €; greater than 3 x 107 the
shear stress on the crack is controlled by v, ;... The influence of this "crack slip"
on the resulting value of f; that can be transmitted through the cracked concrete is
illustrated in Fig. 2.6. When the shear on the crack reaches its limiting value, the

average tension in the cracked concrete is limited to

fl = vcimaxtane (28)
Y e Cracking
2 Crack £, :
(MPa) slip fi= W Eq. (2.2)

—
———
o ——
———
e s — e

fi = vmatant  Eq.(2.8)

I | ] 1 ] ] I ]
0 2 4 6 8 10 12 14 16 18 20

€, (x1 0'3)

Figure 2.6 Calculated Values of f; for Element SE6

If the value of f; is governed by Eq. (2.8) rather than Eq. (2.2), the size of
the member will influence the failure shear. This point is illustrated in Fig. 2.7,
which plots the predicted failure shear stresses for two series of elements. One
series is geometrically similar to SE6 and is loaded in pure shear. The two smallest
elements of this series (s, equals 12 mm and 24 mm) are not governed by crack slip
and hence, are predicted to fail at the same shear stress (4.53 MPa). The three
largest elements all have such low values of f] that the predicted failure shears are

nearly equal to 3.71 MPa, which is the value obtained by assuming zero tension in

-12-



the cracked concrete. It can be concluded that this type of element, which contains
about 3 times the minimum amount of "stirrups” given by the AASHTO-LRFD

specifications[14], is not very sensitive to the size effect in shear.

y
14
5 — ——
Modified Compression
e Field Theory J r A j:v yield = 1.58 MPa
@
4 . D X
- -~___~._______- _ )
Compression
| Field Theory, f,=0
v, 3 1 y ,
(MPa) Modified Compression B Lyyieta = 0-31 MPa
Field Theory -— [... 3y
T ——.,
.\. -~ X
\.
\.N—.
L ——————— =
Compression
Field Theory, f,=0
1|2 2|4 4? 9|8 1|95 3?0 78'0 15|60 31120 s, (mm)
0
1 1 1 1 1 2 4 8 16
16 8 4 2
SCALE FACTOR

Figure 2.7 Influence of Element Size on Predicted Failure Shear Stress of
Two Series of Elements Similar to SE6

The second series of elements plotted in Fig. 2.7 contain only about one-fifth
as much transverse reinforcement as element SE6 (p, = 0.00064) and are subjected
to combined tension and shear with the ratio of axial tensile stress to shear stress
being set at 3. Once again, crack slip is not critical for the two smallest elements
and hence, both are predicted to fail at about the same shear stress (2.10 MPa). The
three largest elements have very low values of f; and hence, their predicted failure
shears are close to 1.16 MPa, which is the value obtained by assuming zero tension
in the cracked concrete. Note that this second series of elements displays a larger
size effect than the first series. The failure shear stress of the largest element in the
second series is only 55% of the failure shear stress of the smallest element. For the
first series this ratio of failure shear stress of the largest element to failure shear

stress of the smallest element is 82%.
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Of the two components, v, and v,, of the shear resistance expressed in Eq.
(2.1), the size effect influences only the v, component. Hence, as the amount of
"stirrups”, p, increases, the importance of the size effect diminishes. This point is
illustrated in Fig. 2.8, which compares the predicted shear stresses at failure for the
two series of elements. In one series the crack spacing is taken as 300 mm, while in
the other it is taken as 2000 mm. It is assumed that the amount of longitudinal (x)
reinforcement and the axial loading of the elements is such that the longitudinal
strain €,, is held constant at 0.5 x 10, It can be seen that the predicted shear stress
at failure becomes more sensitive to crack spacing, and hence, member size as the
amount of stirrup reinforcement, p,, is reduced. When p, is zero, the element with
the 2000 mm crack spacing is predicted to fail at only about half the shear stress of
the element with the 300 mm crack spacing. The minimum stirrup amount shown in

the figure is that given by the AASHTO-LRFD specifications, namely

- ‘/ / (2.9)
(pyf yield)min = 0.083y, c
0.12 1
0.10 22.2°
| f306° 1o
010553 Vif, _/ 19.7° 21_3</I
010~ /0 /‘~———7 . /./1_40
18.2° 510
0 5 15 20.5° 20.6°
0 s e,x103

0 o
0.08|— e1x103 \ = / 1973
° / o Values of 8
18.7 at maximum load
o'

— 0.06

4
7
£

Z
ki

2\

o
=

!
f

>
0.04

T

e
o / 13.8° QQ ™
58.0% 488 ! =0.49 MP __’l N \ r<_
0.02 M 12.70 : fhy'f)".ield - . a -~ —— ~—
. | inimum stirrups fc = 35 MPa €, =0.5x1 03
#11.3° CFT i i =400 MPa @ =19mm
o/ 9.6° | l | |
0 I
0 0.01 0.02 0.03 0.04

py-’;iebi/fc,

Figure 2.8 Influence of Crack Spacing on the Predicted Shear Strengths of a
Series of Elements with Different Amounts of Stirrups
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3. THE BETA METHOD FOR PREDICTING SHEAR STRENGTH
While the equations of the modified compression field theory, given in Fig.

2.2, can be easily solved with the aid of a small computer program, they are not
suitable for hand calculations. If the primary objective is to obtain an estimate of

the maximum shear stress, v,...., that an element can resist, then the equations can be

max?
re-arranged into a form suitable for hand design. The resulting procedure[15] can be
referred to as the beta method. This method forms the basis of the shear design
procedures of the AASHTO-LRFD specifications[14] and is included in the
Canadian concrete code[16].

It is assumed that the y direction reinforcement is the weaker reinforcement
and that this reinforcement is yielding when the maximum shear stress is reached.

Equation (2.1) can then be expressed as

3.1
Vmax © ﬁ\/}cl_ + pyfyieldcot9 ( )

The values of B and © are taken from Table 3.1 for elements that contain more than
the minimum amount of y reinforcement given by Eq. (2.9). For such elements the
size effect in shear is neglected. For elements with less than the minimum amount
of transverse reinforcement, the values of B and 6 are taken from Table 3.2. In
these cases the size effect in shear is accounted for by the crack spacing parameter
s,. The values in Table 3.2 were derived assuming.that the maximum aggregate size
was 19 mm. However, the tabulated values can be used for other aggregate sizes by

using an equivalent spacing parameter, s,,, where

-3 (3.2)

s —_—
Xxe a+16 X
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Table 3.1 Values of B and 0 for Members Containing at Least the Minimum
Amount of Stirrups

v Longitudinal Strain €, x 1000
1! <0 | <025 | <05 | <075 | <10 | <15 | <20
0| 270° | 2850 | 2000 | 3300 | 360° | 410° | 430°
<005
8| 0405 | 0200 | 0208 | 0197 | 0185 | o162 | 0.143
0| 270° | 2750 | 300° | 3350 | 360° | 400° | 420°
<0075
8| 0405 | 0250 | 0205 | 0194 | 0179 | 0158 | 0137
o | 2350 | 265 | 3050 | 3400 | 360° | 380° | 390°
<01
8| 0271 | o211 | 0200 | 0189 | 0174 | 0143 | 0.120
0| 2350 | 280° | 3150 | 340° | 360° | 370° | 380°
<0125
8| 0216 | 0208 | 0197 | o181 | 0167 | 0133 | 0112
s Lol 2o | 2o | 2o | ue | we | s | 370
<01
8| 0212 | 0203 | 0189 | 0171 | o160 | 0125 | 0103
o| 2750 | 3100 | 3300 | 3400 | 3450 | 3500 | 3600
<02
B| 0203 | 0194 | 0174 | 0151 | 0131 | 0100 | 0.083
s 101200 | 20 | B0 | ue | ns | s | as
<02
8| 0191 | 0167 | 0136 | 0126 | o116 | 0108 | 0.104

Table 3.2 Values of  and 6 for Members Containing Less than the Minimum
Amount of Stirrups

55 Longitudinal Strain g %1000
(mm) | .
<0 <025 <£0.50 <1.00 <150 <200
6 27° 29°. 32° 34° 36° 38°
<125
B | 0406 0.309 0.263 0.214 0.183 0.161
0 30° 34° 37° 41° 43° 45°
<250
B | 0384 0.283 0.235 0.183 0.156 0.138
0 34° 39° 43° 48° 51° 54°
< 500
B | 0359 0.248 0.201 0.153 0.127 0.108
6 37 45° 51° 56° 60° 63°
< 1000
B | 0335 0212 0.163 0.118 0.095 0.080
0 41° 53° 59° 66° 69° 72
< 2000
B | 0.306 0.171 0.126 0.084 0.064 0.052
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As an example of using the beta method assume we wish to have a shear

capacity of 2.625 MPa for an element made from 35 MPa concrete, and that the
axial strain, €, is 0.5 x 103, As Voax! fc' is 0.075, the values of P and 6 from Table
3.1 are 0.205 and 30°. Thus Eq. (3.1) becomes

2.625 = 0.205y/35 +p, f,;400t30°

Hence, the amount of transverse reinforcement required is

P, q = 0815 MPa

As this is greater than the minimum value of 0.491 MPa required by Eq. (2.9) we

were correct to use Table 3.1 rather than Table 3.2 to determine P and 0. The point
representing a value of vmax/fc/ of 0.075 at a value of P, fyield/ fc/ of 0.0233 is

shown as a small cross on Fig. 2.8.

As a second example we will determine the shear capacity of an element

with a very small amount of transverse reinforcement such that p, f;.4 equals 0.20

MPa. We will assume that the size of the element is such that s, is 1000 mm, with
a maximum aggregate size of 19 mm, and that &, again equals 0.5 x 107, From

Table 3.2 the values of B and 6 are 0.163 and 51°. Hence,

v__ = 0.163y/35 +0.20cot51°
= 0.964+0.162 = 1.126 MPa
= 0.032f/

The point corresponding to a value of v_,./ fc/ of 0.0322 at a value of p, fq/ fc/ of

0.0057 is shown as a small cross on Fig. 2.8. It can be seen that this point lies
between the values predicted by the modified compression field theory for sy equals

300 mm and sy equals 2000 mm.
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4. "COLUMN" TESTS AT THE UNIVERSITY OF TORONTO

As part of collaborative research between the structural engineering groups at
the University of California, San Diego, and the University of Toronto, three |
reinforced concrete specimens were tested at the University of Toronto in the spring
of 1997. These experiments were designed to investigate the possible magnitude of
the size effect in shear for square reinforced columns. The specimens contained

1.4% of longitudinal reinforcement and a small amount of transverse reinforcement

such that p,f;,4 equalled 0.192 MPa. Two of the specimens had cross-sectional

dimensions of 1 m x 1 m, while the third was 0.3 m x 0.3 m. The specimens were
loaded in single curvature such that the ratio of shear span to overall depth was 2.7.
No axial load was applied. Further details of the test program are given in Fig. 4.1.
Note that specimen WM100D contained 20 longitudinal bars uniformly distributed
around the perimeter, whﬂe WM100C had its 20 longitudinal bars concentrated near
the corners.  Specimen WM30C was a 30% model of WM100C. .

The specimens were loaded as simply supported beams with a point load at
mid-span. See Fig. 4.1. At a number of stages during each load test the
displacement was held about constant while the cracks were marked with a felt pen
and the widths of the cracks were measured with a crack comparator ( accurate to
0.05 mm). Figure 4.2 shows the observed crack patterns and the measured crack
widths for 6 stages in the test of specimen WM100D. Thus, for example, Fig. 4.2(c)
shows the appearance of the specimen just after the point load at the centre of the
beam reached a value of 1572 kN and the mid-span displacement reached a value of
18.4 mm. This point load caused a shear force of 786 kN in the beam. The dead
load of this 1 m by 1 m specimen was 24 kN per metre. Hence, at a section 1 m
from the midspan, the total shear force applied to the section was 786 kN plus 24
kN, that is, 810 kN. If this shear force is divided by the total cross-sectional area
we obtain an average shear stress value of 0.810 MPa. The test described in Fig.
4.1 is intended to simulate a column fixed at the base and loaded with a horizontal
point load 2.7 m above the base. The horizontal displacement of this point load
divided by the 2.7 m storey height is called the storey drift. For the stage shown in
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e 2700 mm ! 2700 mm
300 mm 300 mm

Span Dimensions for WM100D and WM100C
(Dimensions for WM30C are 30% of those above)

|-—1000 mm ——- i

[ 175 mm ® 300 mm
i i i =
170’mm 27 mm l y
; | |55 mm
:i—- + 1§ 87700 mm
N 3
75 mm 75 mm 175 mm
Specimen WM100D WM100C " | wM30C
f/=38MPa fi=41MPa f.=41MPa
Concrete a=10mm a=10 mm a=10 mm
Longitudinal 20-30 mm bars 20-30 mm bars 36-6.6 mm wires
Reinforcement J;yield =550 MPa ];y. = 550 MPa _&yie,d =629 MPa
p.=0.0140 p,=0.0140 p,=0.0137
9.5 mm bars at 9.5 mm bars at 2.64 mm wires at
Transverse 375 mm 375 mm 98 mm
Reinforcement -];yield =508 MPa -&yield =508 MPa j;yield = 520 MPa
ny:vyield: 0.192 MPa ny;yiezd: 0.192 MPa pyfyyield = 0.194 MPa

Figure 4.1 Details of Specimens Tested at the University of Toronto

Fig. 4.2(c) this storey drift is 0.68%. By comparing Fig. 4.2(b) and Fig. 4.2(c) it
can be seen that as the shear stress was increased from 0.794 MPa to 0.810 MPa the
width of the diagonal cracks increased from 0.25 mm to 4.5 mm indicating that a
shear failure was imminent. The appearance of the specimen at the maximum load
is shown in Fig. 4.2(d). By the time the storey drift reached 1.84% the average
shear stress that the section could resist had reduced to 0.280 MPa, and many of the
stirrups had fractured. See Fig. 4.2(f).

Figure 4.3 shows the observed crack patterns and the measured crack widths

for 5 stages during the test of specimen WM100C. This specimen differed from
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WM100DV=550kN
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(b) Shear Stress = 0.794 MPa; Drift = 0.40%

2.5

(c) Shear Stress = 0.810 MPa; Drift = 0.68%

Figure 4.2 Crack Patterns and Measured Crack Widths (mm) for Specimen
WMI100D
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(e) Shear Stress = 0.574 MPa; Drift = 1.17%

WM100D FINAL

(f) Shear Stress = 0.280 MPa; Drift = 1.84%

Figure 4.2 Crack Patterns and Measured Crack Widths (mm) for Specimen
WM100D (continued)
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WM100C V= 550 kN

i

(c) Shear Stress = 0.699 MPa; Drift = 0.36%

Figure 4.3 Crack Patterns and Measured Crack Widths (mm) for Specimen
WM100C

2.



| WM100C V=660 kN
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(d) Shear Stress = 0.684 MPa; Drift = 0.48%

WM100C FINAL

K -

(e) Shear Stress = 0.29 MPa; Drift = 1.06%

Figure 4.3 Crack Patterns and Measured Crack Widths (mm) for Specimen
WM100C (continued)
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WM100D in that the 20 longitudinal bars were clustered in the corners. For
WM100D the average crack spacing, s,, as given by Eq. (2.6) is

L
[

x smaxx +0.1 dbx/ px
0.5x867 +0.1x30/0.014
= 434 +214 = 648 mm

For the clustered pattern of reinforcing bars in WM100C, the maximum distance of
the concrete in the shear area from an x-direction bar increases from 434 mm to 535
mm. See Fig. 4.1. Because 3 bars are bundled in each comer, the effective bar
diameter is also increased. On the basis of the ratio of bar area to outside perimeter,

the effective bar diameter, d,.¢, of a bundle of n bars, each with a diameter of d,, is

.9 @.1)

= = 1.535x30 = 46 mm

Hence, the calculated average crack spacing, s,, for WM100C is

s, = 535+0.1x46/0.014
= 535+329 = 864 mm

Because the cracks in WM100C are predicted to be more widely spaced than those
in WM100D, for a given value of strain the crack widths in WM100C will be wider.
Thus, it is predicted that the maximum shear that WM100C can resist will be lower
than the maximum shear stress that WM100D can resist, and that this lower shear
capacity will be reached at a lower deformation. The maximum shear stress resisted
by WM100C was 0.699 MPa, which was 84% of the capacity of WM100D. The

storey drift at this maximum load was only 0.36%, which was about one-half of the
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storey drift of WM100D at its maximum load. Combare Fig. 4.3(c) and Fig. 4.2(d).
Specimen WM30C was intended to be a 30% scale model of specimen
WMI100C. The calculated average crack spacing, s,, for this specimen is

©
L}

x Smax+ O'Idb:ceﬁ'/ px
0.5%311+0.1x1.535%6.6/0.0137
= 156+74 = 229 mm

Figure 4.4 shows 4 stages during the test of WM30C. It can be seen that, as
expected, WM30C could resist a much higher shear stress than WM100C (in fact,
49% higher) and that the storey drift at the maximum shear stress was much higher
(0.71% for WM30C compared to 0.36% for WM100C). By comparing Fig. 4.3(b)
and liig. 4.4(a) it is evident that for similar levels of shear stress the crack widths in
WM30C are less than one-half of those in WM100C.

A comparison of the observed load-deformation responses of the three
specimens is given in Fig. 4.5. It can be seen that, for these lightly reinforced
sections, "member size", or more specifically "crack spacing” has a significant
influence on the maximum shear stress that the section can resist. The line labelled
ACI in Fig. 4.4 indicates the average failure shear stress according to the ACI

Code[3] expression

| A
v = 0.158yf! bwd+17.24pw%’.bwd+ g (42)
A

For specimen WM100C this gives

7000 N V%925 2x71x508

V = 0.158y41 x1000x925 + 17.24 x1000x925+ —___~__x925
1000%925 Vx1775 375

=936+63+178 = 1177 kN

This predicted shear capacity is 168% of the actual failure shear of 699 kN, which
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indicates that the traditional shear strength expressions given in codes, e.g., Eq.

(1.1), can be very unconservative indeed, for large, lightly reinforced sections.

1.2 y7 7 7

0.8

WM100D

0.6

VIAgross (MPa)

0.2

0.6 0.8

STORY DRIFT (%) = A/2.7x

1.0

Figure 4.5 Comparison of Load-Deformation Response of WM100D,
WM100C and WM30C

It is of interest to calculate the shear strength of specimen WM100C by the

beta method. For such a specimen the shear stress is related to the shear force by

v = - 4.3)

where b, is the web width and d, is the flexural lever arm. If My, is the flexural
capacity of the section when the axial load is zero and strain hardening of the

reinforcement is neglected then d, may be taken as

44)
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where A, is the area of longitudinal reinforcing bars in the flexural tension half of

the cross section. For WM100C the flexural capacity is 3330 kN'm and so,

6
4 = _3330x10° _ e m

v 10x700%x550 =
As the amount of transverse reinforcement is much less than the minimum

(py f),i,ald = 0.192 MPa) Table 3.2 will be used to determine p and 6. For WM100C

the crack spacing s, was calculated to be 864 mm. As the maximum aggregate size

was only 10 mm an equivalent spacing must be calculated from Eq. (3.2).

=_ 3 «864 = 1163 mm

S
¥ 10+16

Tf we assume that at failure the value of &, will be 1 x 10 then, from Table
3.2, we can interpolate between the values for spacings of 1000 mm and 2000 mm
to calculate a B value of 0.112 and a 0 value of 57.6°. Hence, from Eq. (3.1)

y__ = 0.112y/41 +0.192 cot57.6°
= 0.720+0.122 = 0.842 MPa

which corresponds to a shear force of
Viax = 0.842x1000x865 = 728 kN

The AASHTO specifications suggest that, for this type of member, the strain
g, be calculated as
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0.5Vcotd+0.5N+M/d,
£ =

4.5)
y ESAS

For a given value of €, and known values of the shear force, V, and the axial
tension, N, the above equation can be rearranged to find the corresponding value of

the moment, M. Thus,

M = (EAgk -05N-0.5Vcotb)d, (4.6)

L Bt 4

= (200x10°x 10x700x1x 1073 - 0 - 0.5x 728 x 10>cot 57.6) 865
= 1011 kN'm

Hence, at the section where €, equals 1 x 103 at failure, the ratio M/V equals
1011ﬁ28, which is 1.39 m. At the critical section d, from the loading plate, see
Fig. 4.1, the ratio M/V equals 1.76 m. As the ratio M/V increases, €, increases. If
the above calculations are repeated for &, equal to 1.5 x 103, V___ is reduced to 588
kN and M/V is increased to 2.85 m. Interpolating between these two values, the
calculated failure shear when M/V equals 1.76 m is

1.76 -1.39

V. = 728-(728-588)— 2>~
2.85-1.39

- 653 I

The estimates of the failure shears for the 3 specimens obtained from the
ACI method and from the beta method are compared with the observed shear

capacities in Table 4.1 below.

29.



Table 4.1 Predicted Shear Capacities of Toronto Columns

Specimen WM100D | WM100C WM30C
Experimental Failure Shear 834 kN 699 kN 93.7 kN
ACI Prediction 1142 kN 1177 kN 105.0 kN
Beta Prediction 737 kN 693 kN 83.3 kN
Experimental/ACI 0.73 0.59 0.89
Experimental/Beta 1.13 1.01 1.12

5. ANALYTICAL STUDIES OF COLUMN SECTIONS

To identify more precisely those situations in which the size effect in shear
will be important, a series of analytical studies were conducted. These studies used
specimen WM 100D as the base case. Using program RESPONSE from the textbook
Prestressed Concrete Structures[12], estimates were made of the manner in which
the failure shear stress would change as the cross-sectional size was first reduced
from 1 m x 1 m to 0.3 m x 0.3 m and then increased to 3 m X 3 m.

Figure 5.1 illustrates the manner in which the predicted maximum shear
stress capacity of the 3 series of members is predicted to change as the amount of
transverse reinforcement is increased. It can be seen that when the members contain
no transverse reinforcement there is a pronounced size effect. In this case the 3 m x

3 m section is predicted to fail at a shear stress that is 67% of the failure stress of

the 0.3 m x 0.3 m section. When p_f. .4 is greater than about 0.25 MPa, the 3 m x

3 m sections are predicted to fail at the same shear stress as the 1 m x 1 m sections.
For the 1 m x 1 m sections the predicted value of the tension in the cracked
concrete has been reduced to nearly zero and hence, further increases in section size
cause no reduction in shear capacity.

Because the members shown in Fig. 5.1 contain only 1.4% of longitudinal
reinforcement (i.e., 0.7% of flexural tension reinforcement) and are relatively slender
(i.e., shear span to effective depth ratio equals about 3) it takes only a small amount

of transverse reinforcement to ensure that they fail in flexure rather than shear. For
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Figure 5.1 Influence of Amount of Transverse Reinforcement and Member
Size on Predicted Shear Stress at Failure for Members with 1.4% of
Longitudinal Steel

the 0.3 m x 0.3 m sections the modified compression field theory (mcft) predicts

that a p, f;q value of about 0.45 MPa is required to suppress shear failures, while

for the larger sections a value of about 0.62 MPa is required. The ACI equations
suggest that a p £ value of just 0.28 MPa will be sufficient to avoid shear
failures for all three sizes. In view of the experimental result of WM100D it seems
clear that this very small amount of transverse reinforcement would not suppress

shear failures in the larger specimens.

It is obvious that members that contain larger amounts of longitudinal
reinforcement will need to contain larger amounts of transverse reinforcement, if it is
desired to have the member fail in flexure before it fails in shear. Thus the

members shown in Fig. 5.2, which contain 3.0% of longitudinal reinforcement need

to have a p,,f;,4 value of more than 1.13 MPa if shear failures are to be avoided.

With this relatively large quantity of transverse reinforcement the size effect in shear

is negligible.
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Figure 5.2 Influence of Amount of Transverse Reinforcement and Member
Size on Predicted Shear Stress at Failure for Members with 3% of
Longitudinal Reinforcement

Figure 5.3 illustrates the manner in which the axial load on a column will
influence the predicted failure shear stress and the size effect in shear. It can be
seen that, as expected, the shear capacity is predicted to increase when axial
compression acts on the column, and to decrease when axial tension acts on the
column. Note that the ACI Code[3] equations predict that the shear strength
decreases very rapidly as axial tension is applied. As discussed in the introduction,
these equations were developed at a time when it was believed that it was axial
tension that caused the 0.9 m deep Air Force warehouse beams to fail at such low
shear stresses. Figure 5.3 shows that as the axial compressive stress on the columns
increases, the size effect in shear becomes less important. For these particular
members the size effect is predicted to become negligible for compressive stresses

greater than 6 MPa. ‘
The three column tests already discussed and the analytical studies
summarized in Figs. 5.1, 5.2 and 5.3, all dealt with members in which the distance
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Figure 5.3 Influence of Axial Load and Member Size on Predicted Shear
Stress at Failure

from the load to the support was 2.7 times the width of the square cross section.
The question that then arises is how will the size effect in shear change as this
aspect ratio of 2.7 changes. Figure 5.4 summarizes the results of a study in which
the maximum shear stress was calculated for three series of columns (x = 0.3 m, x =
1.0 m, and x = 3.0 m) with aspect ratios varying from 1 to 4. Note that there are
two different types of predictions shown in Fig. 5.4, namely predictions based on a
sectional model and predictions based on a strut-and-tie model.

The AASHTO-LRFD specifications[14] give the details for both a sectional
model for shear and a strut-and-tie model for shear. They state that the sectional
model, which is the beta method discussed above, is appropriate for regions where
the assumptions of traditional engineering beam theory are valid. This theory
assumes that plane sections remain plane, that the shear flow is reasonably uniform
over the flexural depth of the member, and that the response does not depend on the
specific details of how the force effects were introduced into the member.

According to St. Venant’s principle, these assumptions are only likely to be valid in
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Figure 5.4 Influence of Aspect Ratio and Member Size on Predicted Shear
Stress at Failure

regions that are at least a distance equal to the flexural depth of the member away
from point loads or supports. For regions near such discontinuities the strut-and-tie
model, which considers the actual flow of forces in the whole member in more
detail, should be used.

The use of the sectional model and the strut-and-tie model is illustrated in
Fig. 5.5, which compares the observed and predicted shear strengths for a series of
beams tested by Kani[17]. Note that in this figure the symbol "a" is used to
represent the distance from the load to the support. For a/d ratios less than about
2.5 the load carrying capacity of the "strut-and-tie" mechanism is greater than the
load carrying capacity of the "sectional” mechanism. For these short beams, failure
will not occur when the diagonal cracks first widen and the "sectional" capacity
peaks. An internal redistribution of stresses will occur as the tensile stresses in the
cracked concrete drop to near zero and the short beam begins to carry the load as a
tied arch. For the members in Fig. 5.5, which had a/d ratios greater than about 2.5,
the residual capacity of the "tied arch" as predicted by the strut-and-tie model is less
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than the capacity of the "beam" as predicted by the sectional model. For these cases
the members are predicted to fail as soon as the diagonal cracks widen. Thus, the
predicted capacity of a member can be taken as the greater of the capacity predicted
by the sectional model and the capacity predicted by the strut-and-tie model.
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l.—a_{ ‘l]'_a—'l d =538 mm
67 T
] b= 155 mm
0.20 | ﬂl/l{ll”htlﬁ\\ 6,10mm )
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Figure 5.5 Predicted and Observed Strengths of a Series of Reinforced
Concrete Beams Tested by Kani

Strut-and-tie models for the 1 m x 1 m column with aspect ratios of 1.5, 2.0-
and 3.5 are shown in Fig. 5.6. As an example we will consider the model for an
aspect ratio of 2.0. The longitudinal reinforcement, 20 - 30 mm bars, is clustered in
the two vertical members AE and BF, each of which thus contains 10 bars. The
transverse reinforcement is concentrated in the horizontal members AB, CD and EF.
Member CD thus contains the transverse reinforcement from a length of 1000 mm of
the column; that is, 142 x 1000/375 = 379 mm?. When this reinforcement yields,
the tension force in member CD will be 379 x 508, which is 192 kN. This tension
force will be balanced by the 296 kN compression force in strut CB, which in turn
will support 192 kN of the horizontal load applied at B. The remaining 823 kN of
load is supported by strut EB, which thus has a compression force of 2106 kN.

-35-



850 mm
— 850 mm ——
A 0 B| 1640KN
Y A 0 B| 430kN
£ o ,\Q"’ 29.5°
E y -
o IN v
10 48.6° &/ «
S
L/ £
O o
144 £ o G 13.6
+—C > D ~ o
© [i=]
A :: :’E
e Ry 36.1° LY e
E & y 2 )
g || ]
il c 224 . D
E F
T777777777777777777777777777777777 !
(a) hix =15
£
E g
~
© ? S
850 mm T 937° 3
A o B | 1015kN I
—_— k 4
! £ . 224 .
£ Ky 23.0° 4 Y
£ © v "
3 © 8
S & ~ © -
T 404y & £ 2 & o
y 4 ~ ‘ r':
vle -
h
e 192 4 o
4 ] lr 4
] & G H
£ o ,19“ - T77777777777777777777777777777777777
’ =)
g 8 (c) kix =35
b 4
E F
T777777777777777777777777. 77777
(b) hix =2.0

Figure 5.6 Strut-and-Tie Models for Columns with Different Aspect Ratios,
Showing Member Forces (kN)

The cross-sectional area of strut EB, which is loaded by a bearing plate 150

mm long and is anchored by reinforcement 75 mm from the face of the member, can

be taken[13,14] as

1000x(1505in23.0° + 2x75¢0s23.0°)
197000 mm?

e
"

cs

The limiting compressive stress in such a strut is estimated as
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= .1
0.8+ 170¢,
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where €, is the principal tensile strain to which the strut is subjected. At B, tie BD

will be subjected to a tensile strain of

3
g, = 216x10° __ 55410

* 10x700x200x10°

This strain will be reduced to zero as the tie is anchored across the strut. Hence, the
average tensile strain is about 0.77 x 1073, Assuming that the crushing strain of the

strut is 2 x 107 the value of €, is

g, = &,+(g,+0.002)cotor (5:2)
= 0.77x1073+2.77x 103 cot?23.0°
= 16.1x1073
Hence,
fon = 38 = 10.72 MPa
0.8+ 170x0.0161

Thus, the crushing capacity of strut EB

Pu = ACSf;:Il (5.3)
= 197000x10.72 = 2110 kN

As the calculated compression force in the strut is 2106 kN, the strut is just about to
crush and hence, 1015 kN is the maximum load that can be applied, according to the
strut-and-tie model. Thus, for an aspect ratio of 2.0 we predict an average shear
stress at failure of 1.015 MPa by the strut-and-tie model. Note that because these

calculations do not involve tensile stresses in the concrete or shear stresses on crack
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surfaces, there is no "size effect”. Hence, the same failure shear stress is predicted
for the 0.3 m x 0.3 m columns as for the 1.0 m x 1.0 m columns and the 3 m X 3 m
columns. See Fig. 5.4.

Because the shear capacity has no size effect for the strut-and-tie model but
does have a size effect for the sectional model, the aspect ratio at which strut action
begins to dominate changes with member size. Thus, for the members in Fig. 5.4,
strut action dominates for aspect ratios less than 1.85 for the 0.3 m x 0.3 m sections,
less than 2.25 for the 1.0 m x 1.0 m sections and less than 2.72 for the 3.0 m x 3.0
m sections. The presence of strut action greatly reduces the importance of the size
effect in shear for members with aspect ratios less than about 2.3. Thus, at an
aspect ratio of 2.0, the predicted reduction in shear stress, as the member size is
increased from 0.3 m x 0.3 m to 3 m x 3 m, is only 10%, rather than the 33%

predicted by the section model.

6. COLUMN TESTS AT THE UNIVERSITY OF CALIFORNIA,
SAN DIEGO

As part of a study to investigate the influence of the size effect in shear for
circular teinforced concrete columns, a 6 ft (1829 mm) diameter column, L1, and a
companion 2 ft (610 mm) diameter column, S1-2, were tested under reversed cyclic
loading at the University of California, San Diego in the summer of 1996. See Fig.
6.1. The columns were subjected to a small, constant axial force which caused an
axial compressive stress of about 0.11 MPa. The specimens contained about 1.3%

of longitudinal reinforcement and a small amount of transverse reinforcement such

that P, fieq equalled about 0.13 MPa. The specimens were loaded in single

curvature such that the ratio of shear span to overall depth was 2.0. For this aspect
ratio, Fig. 5.4 suggests that strut action may govern the shear capacity of the
columns, being particularly important for specimen L1. It is thus of interest to
calculate the shear capacity of these members using both a sectional model (i.e., the

beta method) and the strut-and-tie model.
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Figure 6.1 Details of Specimens Tested at University of California, San Diego

In applying the beta method to a circular section it is appropriate to calculate

the shear stress, v, and the longitudinal strain, €, at the middle of the member. See

Fig. 6.2. Thus,

y=_Y (6.1)

and
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0.5Vcotd +0.5N +0.33M/d,
€ =

(6.2)
* ES AS

Further, for such a member, the average crack spacing, s,, in the shear area can be

taken as

1 2=
=(—+22|D_+0.14 (6.3)
sx (3 371) x bx/px

where n is the number of longitudinal bars and D, is the diameter of the circle

passing through the centres of the longitudinal bars. Thus, for specimen L1

s =[L+_2® 1660 +0.1x43/0.0133
* 3 3x24 :

= 698 +323 = 1021 mm

As the maximum aggregate size was 25.4 mm this crack spacing needs to be
transformed to an equivalent spacing for 19 mm aggregate before Table 3.2 can be
used. From Eq. (3.2)

_ 35
sxe -y
254+ 16

x1021 = 864 mm
The calculated flexural capacity, Mp,,, when the axial load is zero and strain

hardening of the reinforcement is neglected is 12615 kN. Hence, from Eq. (4.4)

6
g oo 12615x10° o0

Y 12x1452x508

If we assume that, at failure, the value of €, will be 0.5 x 103, then, from
Table 3.2, we can interpolate between the values for crack spacings of 500 mm and
1000 mm to calculate a B value of 0.173 and a 6 value of 48.8°. Thus, from Eq.
(3.1)
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Figure 6.2 Application of the Beta Method to Circular Cross Sections

Voa = 0-173y/296 +0.137cot48.8°
= (0.941+0.120 = 1.061 MPa

which, from Eq. (6.1) corresponds to a shear force of

V. = 1.061x1829x1425 = 2766 kN

The bending moment that will correspond to these values of €, V and 0 can

be found by rearranging Eq. (6.2) as

M =3d(EAct -0.5N-0.5Vcotd) (6.4)

= 3x1425(200x 10°x 12x 1452 0.5x 1072 + 0.5x300x 10° - 0.5x 2766 10° cot48.8°)
= 2914 kN

Hence, at the section where, at failure, €, equals 0.5 X 107 the moment-to-

shear ratio equals 2914/2766, which is 1.05 m. At the critical section, which is a
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distance of d, up from the footing, the ratio M/V equals 3.658 - 1.425, which is 2.23
m. If the above calculations are repeated for €, equal to 1.0 X 103, v, is reduced
to 2069 kN and M/V is increased to 5.95 m. Interpolating between these two values,
the calculated failure shear of member L1, by the beta method, is

V__ = 2766 (2766 - 2069) ?23 ~1.05

.95-1.05
= 2598 kN

An appropriate strut-and-tie model for column L1 is shown in Fig. 6.3. The
24 longitudinal bars are clustered in the two vertical members AF and BG, each of
which thus contains 12 bars. These vertical members are spaced apart a distance
equal to the ﬂexufal lever arm, d,. The transverse reinforcement within a distance
of 1524 mm is concentrated in horizontal member CD, which thus contains 257 X
1524/305 = 1284 mm?. When this reinforcement yields, the tension force in
member CD will be 1284 x 298 = 383 kN. This tension force will be balanced by
the 692 kN compression force in strut DA, which in turn will support 383 kN of the
horizontal force applied at A. The remaining 2717 kN of applied load is supported
by strut AE, which thus has a compressive force of 7758 kN.

Thé cross-sectional area of strut AE near the top of the circular column can

be estimated from the section shown in Fig. 6.3 as
A, = 1535x810 = 1.243 m’

The tensile strain in tie AC can be estimated as

3
g = 769010 =221x1073

* 12x1452x200x10°

This strain will be reduced to zero as the tie is anchored across the strut. Hence, the

average tensile strain in the vertical direction in the strut is about 1.10 x 103,
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Figure 6.3 Strut-and-Tie Model of Column L1

Assuming that the crushing strain of the strut is 2 x 103, the value of &,

perpendicular to the strut is

g, = 1.10x107+ (1.10x 1073+ 2.0x 1073 cot?20°

= 23.3x1073

The predicted crushing stress of the strut is found from Eq. (5.1) as

fou = 28 = 6.22 MPa

08+ 170x233x107

Thus, the crushing capacity of strut AE is predicted to be
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P, =A_f, = 1.243x105%6.22
= 7740 kN

To reduce the compression force in strut AE to 7740 kN the applied
horizontal force needs to be reduced to 3095 kN. Thus, the predicted capacity of
column L1, according to the strut-and-tie model, is 3095 kN.

The predicted shear capacities of columns L1 and $1-2, according to the
sectional model (beta method) and the strut-and-tie model are shown in Table 6.1
below. It can be seen that the predicted capacity from the strut-and-tie model is
19% greater than the sectional model prediction for L1 and 3% greater for S1-2.

For both columns strut action is predicted to dominate and hence, the two columns
are predicted to fail at about the same shear stress.

Table 6.1 lists the maximum shear force that the columns resisted during the
reversed cyclic loading tests and also lists three other sets of predicted values,
namely, the load at which yielding of the longitudinal reinforcement commences at
the base of the column, the load causing flexural failure at the base of the column,
and the failure load predicted by a non-linear finite element analysis using a program
called TRIX96[18], which is based on the modified compression field theory. It will
be noted that both the experimental columns and the TRIX96 analytical models fail
at loads that are between the first yield loads and the flexural failure loads. Also
note that, because of small differences in the geometric and material parameters, the
ratio of the flexural failure load of L1 to the flexural failure load of S1-2 is 10.07
rather than the ideal value of 9.0.

In evaluating the seismic response of a bridge column the ductility of the
member, as exhibited by the load-deformation response, is of equal importance with
the strength. While the TRIX96 analyses predict that both the large column, L1, and
the small column, S1-2, will fail at the same average shear stress, they predict that
the smaller column will be more ductile. See Fig. 6.4. This result suggests that

member size may affect the observed ductility in members that are shear critical.



Table 6.1 Predicted Shear Capacities of San Diego Columns

Specimen L1 S1-2 L1/S1-2
Sectional Model 2598 kN 349 kN 7.44
Strut-and-Tie Model 3095 kN 361 kN 8.57
Predicted Capacity 3095 kN 361 kN 8.57
Experimental Failure 3104 kN 332 kN 9.35
First Yielding 2865 kN 301 kN 9.52
Flexural Failure 3835 kN 381 kN 10.07
TRIX96 Prediction 3340 kN 371 kN 9.00
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Figure 6.4 Predicted Load-Deformation Response of Columns L1 and S1-2

It was thought that the larger ductility predicted for column S1-2 may have

been partly due to the fact that first flexural yielding of the longitudinal

reinforcement was predicted to occur at a somewhat lower shear stress in member

$1-2 than in L1. To investigate the influence of member size on the predicted load-

deformation response of a series of members with identical material properties, three
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analyses were performed using TRIX96. Figure 6.5 shows the predicted
relationships between the applied average shear stress (i.e., shear force divided by
cross-sectional area) and the resulting storey drift (i.e., deformation divided by storey
height) for three columns. The middle column of the set is specimen L1, thatis a 6
ft (1829 mm) diameter column. The smallest column of the set is a one-third scale
model of L1, while the largest column is a version of L1 scaled up by a factor of 3;
ie., it has a diameter of 18 ft (5486 mm). ‘Figure 6.5 shows how the resulting
change of crack spacings influences the predicted load-deformation response for this
type of member. It can be seen that the predicted maximum shear stress is reduced
by only about 10% as the column size is increased from a 2 ft (610 mm) diameter to
an 18 ft (5486 mm) diameter. While the predicted loss in ductility is small as the
column size is increased from 6 ft (1829 mm) diameter to 18 ft (5486 mm)

diameter, there is a substantial increase in the predicted ductility as the column size

is decreased from 6 ft (1829 mm) diameter to 2 ft (610 mm) diameter.
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Figure 6.5 Influence of Crack Spacing on Predicted Load-Deformation
Response
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Figure 6.5 also enables the load-deformation response for specimen L1
predicted by TRIX96 analysis, to be compared with experimental points taken from
the envelope of the measured load-deformation response. It can be seen that the
analytical model underestimated somewhat the member deformations during the
period when the load was being increased, but overestimated somewhat the
deformation at which the capacity would suddenly drop. In view of the complexity
of the actual response, and the detrimental effects of the reversed cyclic loading,
which were not accounted for in the analytical model, it is believed that the
agreement between the predicted and observed load-deformation responses shown in
Fig. 6.5 is very satisfactory.

The predicted deformed shape of L1 at its maximum load is shown in Fig.
6.6. Note the large shear distortions in a band of elements running from the top left
to the bottom right of the column. Also note that the diameter of the column has
significantly increased near mid-height of the column. This "bulging" of the column
is an indicator that a shear failure is imminent. The predicted crack pattern for L1

at its maximum load is shown in Fig. 6.7. The diagonal band of wide cracks also

indicates a shear failure.
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Figure 6.6 Deformed Shape of L1 under Maximum Load, Predicted by
TRIX96
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Figure 6.7 Crack Pattern for L1 under Maximum Load, Predicted by
TRIX96 ‘

7. CONCLUSIONS

The experimental and analytical studies described in this report demonstrate that in
many practical situations member size will influence the failure shear stress and the
ductility of reinforced concrete members. Columns that contain only small amounts
of shear reinforcement, are made from concrete using smaller aggregates, are
subjected to low axial loads, and have ratios of column height to member thickness
greater than about 2.5 are particularly sensitive to the size effect in shear. Three
such columns, tested at the University of Toronto and discussed in this report,
showed that the maximum shear stress that could be resisted reduced from 1.041
MPa to 0.699 MPa as the column size was increased from a 300 mm x 300 mm
section to a 1000 mm x 1000 mm section. As well as reducing the failure shear
stress, an increase in size reduced the ductility of the section. The 300 mm x 300
mm specimen reached its peak load at a drift of 0.71%, while the 1000 mm x 1000
mm section reached its peak load at a 0.36% drift.

Members that contain more shear reinforcement are less sensitive to the size

effect in shear. Analytical studies indicate that members containing the minimum
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amount of shear reinforcement given by the AASHTO-LRFD specifications may
show a reduction in failure shear stress equal to about 15% as member size is
increased from 300 mm x 300 mm to 3000 mm x 3000 mm. Members with twice
this amount of shear reinforcement show only a 1.5% reduction in shear strength due
to the size effect.

Columns that are subjected to significant axial compression are also less
sensitive to the size effect in shear. For the members studied in this report, the size
effect in shear was predicted to become negligibly small when the axial compressive
stress on the column reached 6 MPa.

When the aspect ratio, defined as the ratio of the height of a column to its
overall thickness, becomes small a significant portion of the applied horizontal load
can be carried by a diagonal strut of concrete going from the load location down to
the support. The capacity of this load carrying mechanism can be esﬁmated using
the strut-and-tie model given in the AASHTO-LRFD specifications. These
specifications give both a sectional model, called thé beta method, which for
members containing less than the minimum amount of stirrups, incorporates a size
effect, and a strut-and-tie model, which does not contain a size effect. The predicted
shear capacity of a member, according to these specifications, should be taken as the
larger of the shear capacities predicted by the two models. The aspect ratio at which
strut-and-tie action begins to dominate changes with member size, going down from
about 2.7 for 3 m members to 1.8 for 0.3 m members. The presence of strut action
is predicted to greatly reduce the importance of the size effect in shear for members
with aspect ratios less than about 2.3.

The sensitivity of the size effect in shear to the aspect ratio of the column
can be observed if two of the column tests from the University of Toronto are
compared with the two column tests from the University of California, San Diego.
As can be seen in Table 7.1 below, the two sets of columns had similar percentages
of longitudinal reinforcement and similar amounts of shear reinforcement. The
Toronto columns, with an aspect ratio of 2.7, showed a decrease in shear stress

capacity of 33% as the member size increased by a factor of 3.33. On the other
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hand, the San Diego columns, which had an aspect ratio of 2.0, displayed an
increase in shear stress capacity of 4% as the member size increased by a factor of
3.

Table 7.1 Comparison of Toronto and San Diego Column Tests

Test Location Toronto San Diego
Specimen WM100C | WM30C L1 S1-2
Cross-Section square square circular circular
Section Size 1000 mm 300 mm 1829 mm 610 mm
Longitudinal Steel, p, 1.40% 1.37% 1.33% 1.37%
Transverse Steel, P, f ;i 0.192 MPa | 0.192 MPa | 0.137 MPa | 0.126 MPa
Concrete, fc/ 41 MPa 41 MPa 29.6 MPa | 31.2 MPa
Aspect Ratio 2.7 2.7 2.0 2.0
Maximum Shear Stress 0.70 MPa | 1.04 MPa | 1.18 MPa | 1.14 MPa
Ratio Large/Small 0.67 1.04

It is shown in the report that analytical methods based on the modified
compression field theory are capable of predicting reasonably well the size effect in
shear. These methods include the beta model and the strut-and-tie model, which are
suitable for hand calculations, program RESPONSE, which predicts the load-
deformation response of a section, and program TRIX96, which conducts a non-
linear finite element analysis of the complete member. Analytical studies using
TRIX96 indicated that while member size has only a small influence on the failure
shear stress of columns with low aspect ratios, increasing the member size can
significantly reduce the ductility of these members.

It is believed that the studies summarized in this report provide guidance as
to when serious consideration needs to be given to the effects of member size on the

shear response of reinforced concrete members.
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